For the radiation from a black body in thermal equilibrium, see Black-body radiation.
As the temperature of a black body decreases, its intensity also
decreases and its peak moves to longer wavelengths. Shown for comparison
is the classical Rayleigh–Jeans law and its ultraviolet catastrophe.
A black body in thermal equilibrium (that is, at a constant temperature) emits electromagnetic radiation called black-body radiation. The radiation is emitted according to Planck's law, meaning that it has a spectrum that is determined by the temperature alone (see figure at right), not by the body's shape or composition.
A black body in thermal equilibrium has two notable properties:[2]
- It is an ideal emitter: at every frequency, it emits as much energy as or more energy than any other body at the same temperature.
- It is a diffuse emitter: the energy is radiated isotropically, independent of direction.
Real materials emit energy at a fraction—called the emissivity—of black-body energy levels. By definition, a black body in thermal equilibrium has an emissivity of ε = 1.0. A source with lower emissivity independent of frequency often is referred to as a gray body.[5][6] Construction of black bodies with emissivity as close to one as possible remains a topic of current interest.[7]
In astronomy, the radiation from stars and planets is sometimes characterized in terms of an effective temperature, the temperature of a black body that would emit the same total flux of electromagnetic energy.
No comments:
Post a Comment